Event-driven feedback tracking and control of tapping-mode atomic force microscopy
نویسندگان
چکیده
This paper presents an event-driven, discrete-in-time feedback strategy for tracking and stabilizing naturally occurring periodic oscillations in the probe-tip dynamics of atomic force microscope (AFM) cantilevers in tapping-mode operation. Specifically, robust dynamic tracking and stabilization is achieved by the imposition of discrete changes in the vertical offset between the cantilever support and the sample surface based on an estimated linearization of the system dynamics about a dynamically generated reference trajectory. Here, use is made not only of the oscillation amplitude, as is typical in commercial control implementations for AFMs, but also of the instantaneous phase information. It is shown that stabilization and desirable performance during surface scanning is possible, even in the presence of uncertainty and limited state access. In particular, the methodology enables robust tracking and use of low-contact-velocity periodic system responses that are unstable in the absence of control.
منابع مشابه
Torsional Resonance Mode Imaging for High- Speed Atomic Force Microscopy
The instrumentation of high-speed imaging has been a challenge for scanning probe-based technologies. Mechanical stability of the system, surface tracking at sharp topographic transitions and prolonging tip lifetime have been the determining factors for practical applications. In this paper we report a new type of feedback control based on the torsional resonance amplitude (TRmode ) of cantilev...
متن کاملHigh-speed atomic force microscope imaging: adaptive multiloop mode.
In this paper, an imaging mode (called the adaptive multiloop mode) of atomic force microscope (AFM) is proposed to substantially increase the speed of tapping mode (TM) imaging while preserving the advantages of TM imaging over contact mode (CM) imaging. Due to its superior image quality and less sample disturbances over CM imaging, particularly for soft materials such as polymers, TM imaging ...
متن کاملDirect tip-position control using magnetic actuation for achieving fast scanning in tapping mode atomic force microscopy
This article presents the development of a faster control loop for oscillation amplitude regulation in tapping mode operation of atomic force microscopy. Two techniques in relation to actuation and measurement are developed, that together significantly increase the bandwidth of the control loop. Firstly, magnetic actuation is employed to directly control the tip position of the cantilever to im...
متن کاملConstant Force Feedback Controller Design Using PID-Like Fuzzy Technique for Tapping Mode Atomic Force Microscopes
A novel constant force feedback mechanism based on fuzzy logic for tapping mode Atomic Force Microscopes (AFM) is proposed in this paper. A mathematical model for characterizing the cantilever-sample interaction subsystem which is nonlinear and contains large uncertainty is first developed. Then, a PID-like fuzzy controller, combing a PD-like fuzzy controller and a PI controller, is designed to...
متن کاملNovel Reciprocal Self-Sensing Techniques for Tapping-Mode Atomic Force Microscopy
We evaluate two novel reciprocal self-sensing methods for tapping-mode atomic force microscopy (TM-AFM) utilizing charge measurement and charge actuation, respectively. A microcantilever, which can be batch fabricated through a standard microelectromechanical system (MEMS) process, is coated with a single piezoelectric layer and simultaneously used for actuation and deflection sensing. The setu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008